CS4090 Project
Report

eXperimental Operating System
Redesign XSM architecture and implement eXpOS, Simulator, Debugger,
System Level Compiler and Application Level Compiler.

Submitted in partial fulfillment of
the requirements for the award of the degree of

Bachelor of Technology

in
Computer Science and Engineering

Submitted by

Roll No Names of Students

B120458CS ANJANA BABU
B120012CS CHRISTIN V. JOSE
B120152CS LENY W. V.
B120363CS KURIAN JACOB

Under the guidance of
Dr. K. Muralikrishnan

Department of Computer Science and Engineering
NATIONAL INSTITUTE OF TECHNOLOGY CALICUT
Calicut, Kerala, India — 673 601

Department of Computer Science and
Engineering

NATIONAL INSTITUTE OF TECHNOLOGY CALICUT

Certificate

This is to certify that this is a bonafide record of the project presented by
the students whose names are given below during Monsoon/Winter and Year
2015-2016 in partial fulfilment of the requirements of the degree of Bachelor
of Technology in Computer Science and Engineering.

Roll No Names of Students

B120458CS ANJANA BABU
B120012CS CHRISTIN V. JOSE
B120152CS LENY W. V.
B120363CS KURIAN JACOB

Dr. K. Muralikrishnan
(Project Guide)

Date: February 21, 2016

Abstract

jAbstract here,

Contents

Problem Definition
Introduction

1 SPL

2 Revised architecture

3 Enhancements to XOS
4 XSM Simulator

5 XF'S Interface
Conclusion
Acknowledgements

References

10

11

12

13

14

List of Figures

2.1 The new architecture.

i

Problem Definition

Redesign XSM architecture and implement the existing Experimental Op-
erating System. Incorporate the concept of asynchronous disk transfer and
dynamic memory allocation. Addition of new state blocked for the process
and make necessary changes in accordance with it. Introduction of disk and
console interrupts and special ports for I/O operations. Modify the process
virtual space to support dynamic link library.

Introduction

Project eXpOS or eXperimental Operating System is an educational
platform to develop an operating system. It is an instructional tool for stu-
dents to learn and implement OS data structures and functionalities on a
simulated machine called XSM (eXperimental String Machine). The
OS is programmed using a custom language known as SPL (System Pro-
grammer’s Language) and application programs, which run on the OS,
are programmed using ExpL (Experimental Language). XFS Interface
(eXperimental File System Interface) is an external interface to access
the filesystem of the eXpOS. The interface can format the disk, load /remove
files, list files and copy blocks to a UNIX file.

Chapter 1
SPL

SPL or System Programmer’s Language in reality is not a high level pro-
gramming language, but an enhanced assembly language programming sys-
tem for writing kernel mode programs for the XSM machine. This language is
useful for implementation of an OS on top of the XSM machine. The language
is minimalistic and consists only of very basic constructs. Programming us-
ing SPL requires an understanding of the underlying XSM architecture and
operating system concepts.

SPL has been improved to support the new features provided by the ar-
chitecture.

Registers

SPL allows the use of 25 registers (RO-R15, BP, SP, IP, PTBR, PTLR,
EIP, EC, EPN, EMA) and 4 ports (PO-P3). PO and P1 are used for standard
input and standard output respectively.

Improved Statements

goto statement simulates an unconditional jump. backup and restore trans-
lates to BACKUP and RESTORE machine instructions respectively. The asyn-
chronous load and store translates to LOAD and STORE machine instructions
respectively.

Labels

SPL now supports labels. SPL does not officially support function calls, but
a limited functionality can be achieved using labels and the call statement
by following some conventions.

Modules

The concept of modules was introduced. From now on, each SPL program
will be considered as a module. A module consists of a maximum of 1024
words which includes both the space allocated for code and data. The SPL
compiler translates an SPL source program to a target XSM assembly mod-
ule.

Each SPL module is designed to occupy a maximum of two pages of con-
tinuous memory in the XSM machine. A module typically contains protected
mode code that carries out certain functions as determined by the OS pro-
grammer. The following suggests certain programming conventions which
are recommend while designing SPL modules:

1. Each module shall be designed to have a single entry point, which is
generally the starting memory address of the module in the memory. It
is not recommended to transfer control directly into a location within
a module from other modules.

2. Arguments to a module (typically includes the function code indicat-
ing which function within the module is to be invoked, as well as the
parameters to that function) and return values shall be passed either
through registers RO, R1, R2.. or through stack as required.

The SPL compiler given here uses the constants (given in constants.spl
file) MOD_0 to MOD_7 as starting address of eXpOS kernel modules,
which are (optionally) loaded into various pre-defined memory pages
of the XSM machine when eXpOS starts up. In addition to these,
all interrupt service routines can be programmed as SPL modules and
loaded to the corresponding interrupt service routine locations in mem-
ory. The SPL predefined constants INT_0 to INT_18 can be used to
invoke these modules.

3. A module may be entered as a result of:

(a) Execution of a software interrupt from an application (unprotected
mode) program.

(b) Occurrence of a hardware interrupt/exception while an application
was executing.

(c) Call from another module.

Case a) In this case, the arguments to the module are passed through
the application program stack. The return values are also passed

4

through the same stack. The convention is that the application must
save the state of its registers before making the call. (For instance, the
eXpL compiler will save the context in the user stack before invoking a
software interrupt). Thus, the interrupt routine need not concern itself
about saving the context of the application and can use the registers
R0O-R15 without saving them. However, the application is not expected
to save SP, BP registers before the call, and the module must save them
for future return.

However, in this case, it is strongly recommended that the module
allocates its own stack for local memory allocation and not use the ap-
plication’s stack. This is to avoid potential user level hacks into kernel
mode interrupt modules through the stack.

Case b) This case applies to the exception handler, timer interrupt
routine, disk interrupt routine and the console interrupt routine. The
difference here from case a) is that the application does not have con-
trol over the transfer of control, and hence would not have saved its
context. Thus, in this case, the module must save the register context
of the application in its own stack (or elsewhere in the memory) before
using the registers and must restore the context before returning to the
application.

Case c) In this case, since the caller and the callee are both execut-
ing in protected mode, the same stack can be used. The recommended
convention is that the caller must save its register context into the stack
before making the call.

Chapter 2

Revised architecture

Register Set

Register set has been revamped to contain 20 general purpose registers (RO-
R19) instead of 8 general purpose registers (R0-R7), 16 kernel registers and
4 temporary registers. 4 ports (P0-P3) have also been introduced for chan-
nelling I/O operations. Exception Flag Register (EFR) has been replaced
with Exception Instruction Pointer (EIP), Exception Cause (EC), Exception
Memory Address (EMA), Exception Page Number (EPN).

Instruction Set

The instruction set has been expanded to include asynchronous instructions
LOAD, STORE and IN. PORT instruction has been added to support data trans-
fer between registers and ports. Direct indexed addressing has been intro-
duced for data transfer. ENCRYPT instruction to encrypt the contents of a
given register. BACKUP/RESTORE instructions to save/restore the contents of
registers to/from the stack easily.

Memory

Memory has been reorganised to contain the new interrupt handlers. The
pages from 2-39 have been allocated for this purpose. The paging hardware is
now improved. Each translation entry contains two more fields that indicate
a dirty and write page.

Interrupts and Exception Handling

New hardware interrupts have been added to handle disk and console devices
resulting in 4 hardware interrupts. Number of software interrupts have been
increased to 15 from 7.

XSM Architecture

Processor Memory Disk

ROM Code 0 Startup code

CPU
Boot Block

Timer

Registers Exception Handler

IP, SP, BP
PTLR, PTBR
RO - R19
EIP, EC, EPN,
EMA

Timer Interrupt Handler

6 Disk Interrupt Handler

Console Interrupt Handler

10

Software Interrupt #4 Disk Controller

3 Software Interrupt #18

EEE® .
.. Unreserved Pages

127

Ports

511

Stdin || Std out
Console

Figure 2.1: The new architecture.

Disk controller interrupt was added to support asynchronous disk access
by the Operating System. Console interrupt, likewise support asynchronous
console access. This was designed keeping in mind that whenever a process
requires disk access, it will issue a disk access request and will get sub-
sequently blocked. When the disk access is complete, an interrupt is fired
which channels the data to the blocked process, and the process is unblocked.

The notion of asynchronous and synchronous read, write and load were in-
troduced. In synchronous operation, the system waits for the operation to
be completed whereas in asynchronous the system doesn’t do so.

Chapter 3

Enhancements to XOS

In addition to the features in XOS, eXpOS supports multi-user mode,
system calls for access control and synchronization, console and disk inter-
rupts. Provision for asynchronous disk transfer and dynamic memory alloca-
tion is also added. eXpOS allocates 10 pages (shared library:2, heap:2,
code:4, stack:2) per process.

OS Modules
OS Modules, such as Resource Manager, Process Manager, Memory Man-
ager, File Buffer Manager, Device Manager and Context Switch Module,

which are routines invoked from within system calls/ interrupts/ exception
handler have been added.

High Level Library Interface

The High Level Library Interface is a unified system call and memory man-
agement interface provided in APL. The interface was introduced to reduce
coupling between the underlying architecture and the high level interface.
The interface is a mere wrapper for system calls and memory management
routines, provided through the exposcall APL call. It takes a fun_code,
which determines the action to be taken. If fun_code is negative, a memory
management operation is invoked, otherwise, the corresponding system call
is invoked.

Application Binary Interface

ABI or Application Binary Interface was designed to define the machine
model, division of memory address space into regions, file format to be fol-
lowed for the executable files, low level system call interface and low level
runtime library interface. eXpOS executes only the files of XEXE Executable
File Format.

Chapter 4

XSM Simulator

The XSM or eXperimental String Machine Simulator is used to simulate
the XSM hardware. It is an interrupt driven uniprocessor machine. The ma-
chine handles data as strings. A string is a sequence of characters terminated
by \0. The length of a string is at most 16 characters including \0. Each of
these strings is stored in a word. The machine interprets a single character
also as a string.

The simulator now has two more flags at invocation, for setting the inter-
vals after which console (--console) or disk (--disk) interrupt is fired. The
XSM is modified to support the new instructions, registers and ports.

Chapter 5

XFS Interface

XFS or eXperimental File System Interface is an external interface to ac-
cess the filesystem of the eXpOS. The filesystem is simulated on a binary file
called disk.xfs. The interface can format the disk, load or remove files, list
files, copy files to and from the XF'S file system to the UNIX file system and
copy specified blocks of XF'S disk to a UNIX file .

10

Conclusion

11

Acknowledgments

12

References

[1] Maurice J. Bach. The Design of the UNIX Operating System, Prentice-
Hall, 1986.

[2] Andrew S. Tanenbaum, Herbert Bos. Modern Operating Systems, Pear-
son Education, 02-Apr-2014.

[3] eXpOS NITC Documentation, 2011-2015 Batch, exposnitc.github.io

13

exposnitc.github.io

	Problem Definition
	Introduction
	SPL
	Revised architecture
	Enhancements to XOS
	XSM Simulator
	XFS Interface
	Conclusion
	Acknowledgements
	References

