
ENHANCEMENT TO XOS EDUCATIONAL

OPERATING SYSTEM AND XFS FILE

SYSTEM

A THESIS
Submitted by

KRUTHIKA SURESH VED B110300CS
SIKHA V MANOJ B110572CS and
SONIA V MATHEW B110495CS

In partial fulfilment for the award of the degree of

BACHELOR OF TECHNOLOGY
IN

COMPUTER SCIENCE AND ENGINEERING

Under the guidance of
DR. K MURALIKRISHNAN

DEPARTMENT OF COMPUTER ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY CALICUT

NIT CAMPUS PO, CALICUT
KERALA, INDIA 673601

May 19, 2015

ii

ACKNOWLEDGEMENTS

We are highly indebted to Dr. K.Muralikrishnan for his guidance and

constant supervision as well as for providing necessary information regarding the

project and also for his support in completing the project.

We would like to express our gratitude towards Dr. Abdul Naseer, Head of

Department of Computer Science and Engineering Department, and Mrs.

Lijiya A, Project Coordinator, for their kind co-operation and encouragement

which helped us in the completion of this project.

We thank the past contributors of the earlier versions of this project, Ajeet

Kumar, Albin Suresh, Avinash, Deepak Goyal, Jeril K George, K Dinesh,Mathew

Kumpalamthanam, Naseem Iqbal, Nitish Kumar, Ramnath Jayachandran,

Sathyam Doraswamy, Shamil C M, Sreeraj S, Sumesh B, Vivek Anand T

Kallampally, and Yogesh Mishra.

Our thanks and appreciations also goes to our colleagues in developing the

project and people who have willingly helped us out with their abilities.

Last but not the least, we also wish to express our indebtedness to our parents as

well as our family members whose blessings and support always helped us to face

the challenges ahead.

KRUTHIKA SURESH VED

SIKHA V MANOJ

SONIA V MATHEW

DECLARATION

“We hereby declare that this submission is our own work and that, to the best of
our knowledge and belief, it contains no material previously published or written
by another person nor material which has been accepted for the award of any other
degree or diploma of the university or other institute of higher learning, except
where due acknowledgment has been made in the text”.

Place:
Date:

Signature :
Name :
Reg.No:

Signature :
Name :
Reg.No:

Signature :
Name :
Reg.No:

CERTIFICATE

This is to certify that the thesis entitled: “ENHANCEMENT TO XOS EDU-
CATIONAL OPERATING SYSTEM AND XFS FILE SYSTEM” sub-
mitted by Sri/Smt/Ms KRUTHIKA SURESH VED B110300CS , SIKHA
V MANOJ B110572CS, and SONIA V MATHEW B110495CS to Na-
tional Institute of Technology Calicut towards partial fulfillment of the require-
ments for the award of Degree of Bachelor of Technology in Computer Science
Engineering is a bonafide record of the work carried out by him/her under my/our
supervision and guidance.

Signed by Thesis Supervisor(s) with name(s) and date

Place:
Date:

Signature of Head of the Department

Office Seal

v

Contents

Chapter

1 Problem Definition 1

2 Literature Survey 2

3 Introduction 5

4 Experimental File System(eXpFS) 7

4.1 Introduction . 7

4.2 eXpFS File system organization . 7

4.2.1 The eXpFS Root File . 8

4.2.2 eXpFS Data files . 8

4.2.3 eXpFS Executable files . 8

5 Process Model 10

5.1 The Structure of Processes . 10

5.2 Operations on Processes . 11

5.2.1 Semantics of Exec operation 12

5.2.2 Semantics of Fork operation 12

5.2.3 Other Operations . 13

5.3 Special Processes in eXpOS . 13

vi

6 Synchronization and Access Control 14

6.1 Process Synchronization . 14

6.2 Access Control . 15

7 Hardware Interrupts and Exception Handlers 16

7.1 Timer interrupt handler . 16

7.2 Exception handler . 17

7.3 Disk Controller . 17

7.4 Terminal and other Device Handlers 18

8 System Call Interface 19

8.1 File System Calls . 19

8.2 Process System Calls . 23

8.3 System calls for access control and synchronization 25

9 Design of Data Structures 29

9.1 Disk Data Structures . 29

9.1.1 Inode Table . 29

9.1.2 Disk Free List . 30

9.1.3 Root File . 30

9.2 Memory Data Structures . 31

9.2.1 Process Table . 31

9.2.2 File Table . 36

9.2.3 Semaphore Table . 36

9.2.4 Buffer Table . 37

9.2.5 Disk Status Table . 38

9.2.6 System Status Table . 39

9.2.7 Terminal Status Table . 39

9.2.8 Memory Free List . 40

vii

10 Algorithms Used 41

11 Work Done 52

12 Future Work 53

13 Conclusion 54

Bibliography 55

Appendix

A Appendix 56

A.1 State Transition Diagram in eXpOS 56

viii

Abstract

eXpOS or eXperimental Operating System is a tiny multiprogramming oper-

ating system. It has a very simple specification that allows a junior undergraduate

computer science student to implement it in a few months, subject to availability of

adequate hardware and programming platform support. It is also an instructional

tool to learn and implement OS data structures and functionalities on a simulated

machine called XSM (eXperimental String Machine).

This report presents the specification and design of eXpOS, an enhancement of the

XOS educational operating system described in [1]

ix

Figures

Figure

5.1 Process Model in eXpOS . 10

9.1 Inode Table . 29

9.2 Root File . 30

9.3 Process Table . 31

9.4 Machine State . 34

9.5 Per Process Resource Table . 35

9.6 Per Process Page Table . 35

9.7 File Table . 36

9.8 Semaphore Table . 37

9.9 Buffer Table . 37

9.10 Disk Status Table . 38

9.11 System Status Table . 39

9.12 Terminal Status Table . 40

A.1 State Transitions . 56

Chapter 1

Problem Definition

This project aims to modify and update the XOS Educational Operating

System [1] by

• Re-engineering the eXpFS system.

• Including inter process communication

• Redesigning process model

• Introducing shared memory model

• Adding more system calls thus broadening the features

The updated version is named as eXpOS/Experimental Operating System. Thus,

adding the above features, allows eXpOS to be more instructive and informative

educational tool than XOS.

Chapter 2

Literature Survey

There are several instructional operating systems available like Nachos, Topsy

etc. developed by various universities.

Not Another Completely Heuristic Operating System, or Nachos [2], is one

such instructional software developed at the University of California, Berkeley. Na-

chos supports threads, user-level processes, virtual memory and interrupt-driven

input output devices.

In Nachos, a process is associated with an address space which is divided into

Executable code, Stack for local variables and Heap for global variables and dy-

namically allocated memory. Nachos also supports threads which share the same

code and global variables.

Nachos does not maintain an explicit process table but maintains informa-

tion about a thread as private data of a Thread object instance. It also provides

function routines for thread switching and process switching.

Nachos implements round robin scheduling which is handled by routines in

the Scheduler object. The Nachos scheduler maintains a data structure called a

readylist, which keeps track of the threads that are ready to execute.

3

Nachos supports a single top-level directory. In Nachos, files are accessed

through several layers of objects. At the lowest level, a Disk object provides a in-

terface for initiating I/O operations. Each Nachos file has an associated FileHeader

structure, similar to a Unix inode. But unlike a UNIX inode, FileHeader contains

only direct pointers to the file’s data blocks. Nachos requires that executables files

be in the Noff format which includes Noff header.

In Nachos, the OS code written is actually a C code running on Linux/Unix

machine. When an application program invokes an OS system call, the MIPS sim-

ulator transfers control to a corresponding function in the simulating environment.

It is the responsibility of the programmer to write the C code in a way that it im-

plements the system call routine. Since the MIPS machine is simulated, the code

has access to its memory, registers etc. Thus the user can implement the system

call, put return values in appropriate memory locations on the simulated MIPS

machine and transfer control back to the calling program.

But in eXpOS, the OS and the application programs run in the same machine

as is the case in real systems. The compromise made in achieving this goal was to

make the machine unreal and the OS simple enough so that additional complexity

is manageable for a short term project.

Similar to Nachos, Topsy [3], or Teachable Operating System, is an instruc-

tional tool developed by ETH-Zurich. The module Topsy can be seen as a collection

of routines used by various kernel components. In short, it is the kernel library.

Like Nachos, it also supports threads, running in one address space and may share

global memory between them. The private area of a thread is its stack. Synchro-

nization of shared memory is accomplished via messages between multiple threads.

4

The memory is organized in paged manner. Topsy divides the memory into

two address spaces: one for user threads and the other for the OS kernel. Further-

more, the two address spaces are embedded in one virtual address space and no

swapping of pages to secondary memory is supported.

Chapter 3

Introduction

Project eXpOS or experimental Operating System is a educational platform

to develop an operating system. Several instructional operating systems like Na-

chos, Pintos, GeekOS etc. have been developed by various universities for this

purpose. XOS[1], the previous version of eXpOS, was such a tool that helps un-

dergraduate computer science students acquire an elementary understanding of the

practical aspects of an operating system.

XOS had features like multiprogramming, process management, a primi-

tive filesystem and virtual memory. For simplicity, OS features like inter-process

communication, device management, file caching, file permissions etc. had been

excluded from XOS. In the present version, eXpOS, some of these features such

as inter process communication, asynchronous disk access, heap, etc has been in-

cluded to make the student more proficient in Operating System concepts. The

basic Machine model consists of memory, disk and the CPU. eXpOS includes spec-

ification for a set of system calls, the scheduler, the exception handler, device

drivers etc. Further hardware support required includes the timer, disk controller,

Terminal Device etc.

The primary components of the project include a simulated machine hard-

ware (XSM), a file system (eXpFS) and the operating system (eXpOS). No code

6

base for the operating system is provided and the operating system is completely

implemented by the student. Apart from the primary components, various tools are

provided as part of the development environment. They include languages like Ex-

perimental Programming Language (ExpL) and System Programmer’s Language

(SPL) and their cross compilers to XSM instruction set, XSM debugger, and a

UNIX-XFS interface to transfer files between a UNIX machine and the XFS disk

(the eXpFS disk is itself a UNIX file).

Chapter 4

Experimental File System(eXpFS)

4.1 Introduction

The eXpFS logical file system provides a file abstraction that allows appli-

cation programs to think of each data (or executable) file stored in the disk as a

continuous stream of data (or machine instructions). eXpOS provides a sequence

of file system calls through which application programs can create/read/write files.

These system calls are OS routines that does the translation of the user request

into physical disk block operations.

In addition to the eXpOS system call interface, the eXpFS specification also

requires that there is an external interface through which executable and data files

can be loaded into the file system externally. The external interface for eXpOS

implementation on the XSM machine is the XFS Interface.

4.2 eXpFS File system organization

The eXpFS logical file system comprises of files organized in a single directory

called the root. The root is also treated conceptually as a file. Every eXpFS file

is a sequence of words. Associated with each eXpFS file there are three attributes

- name, size and type, each attribute being one word long. The filename must be

8

a string. Each file must have a unique name. The size of the file will be the total

number of words stored in the file. There are three types of eXpFS files - the root,

data files and executable files. Each file in eXpFS has an entry in the root called

its root entry.

4.2.1 The eXpFS Root File

The root file has the name root and contains meta-data about the files stored

in the file system. For each file, the root stores a root entry which consists of

filename, file-size and file-type. The first root entry is for the root itself. The

operations on the root file are Open, Close, Read and Seek.

4.2.2 eXpFS Data files

A data file is a sequence of words. eXpFS treats every file other than root

and executable files as a data file. The Create system call automatically sets the

file type field in the root entry for any file created through the create system call to

DATA. eXpOS allows an application program to perform the following operations

on data files: Create, Delete, Open, Close, FLock, FUnlock, Read, Write, Seek.

4.2.3 eXpFS Executable files

These contain executable code for programs that can be loaded and run by

the operating system. From the point of view of the eXpFS file system alone,

executable files are just like data files except that file type is EXEC in the root

entry. eXpFS specification does not allow executable files to be created by applica-

tion programs. They can only be created externally and loaded using the external

interface.

Executable files are essentially program files that must be loaded and run by

9

the operating system. The Exec system call invokes the eXpOS loader that loads

an executable file in XEXE format into memory for execution. The Operating

system imposes certain structure on these files (called the executable file format).

Moreover, the instructions must execute on the machine on which the OS is run-

ning. Thus, there is dependency on the hardware as well.

The executable file format recognized by eXpOS is called the Experimental

executable file (XEXE) format. In this format, an executable file is divided into

two sections. The first section is called header and the second section called the

code (or text) section. The code section contains the program instructions. The

header section contains information like the size of the text and data segments in

the file, the space to be allocated for stack and heap areas when the program is

loaded for execution etc. This information is used by the OS loader to map the

file into a virtual address space and create a process in memory for executing the

program.

Chapter 5

Process Model

A program under execution is called a process. A process is newly created

when a process already in execution invokes the Fork system call. The first process,

the INIT process, is created by the OS during bootstrap by loading a code stored

in a pre-defined disk location to memory and setting up a process. The OS assigns

a unique integer identifier called process id for each process when it is created.

The process id does not change during the lifetime of the process. The process

that creates the new process is called the parent process of the newly created

process.

5.1 The Structure of Processes

Figure 5.1: Process Model in eXpOS

11

The address space of a process is a contiguous sequence of memory ad-

dresses, starting from zero, accessible to a process. The eXpOS logically parti-

tions the address space into four regions library, heap, code and stack. These

regions are mapped into physical memory using hardware mechanisms like pag-

ing/segmentation.

Every process corresponds to some executable file stored in XEXE format.

When the program is loaded into memory by the operating system, the OS reads

the header and sets up the regions of the virtual address space accordingly. Once

the layout of the virtual address space is clear, the OS maps the virtual address

space into the physical memory. The part of the OS which does all these tasks

is called the OS loader. The eXpOS loader is the interrupt service routine corre-

sponding to the Exec system call.

A process may open files or semaphores. The OS associates a file handle

with each open instance of a file. Similarly, the OS assigns a semaphore identifier

(semid) for each semaphore acquired by the process. The file handles and semids

acquired by a process are also attributes of a process.

Note: In addition to the above attributes of a process that are visible to

application/system programs, a process under execution at any given point of

time has an execution context. The context of a process refers to the contents of

the registers, instruction pointer, contents of the memory etc. These are hardware

dependent and are managed internally by the OS.

5.2 Operations on Processes

The two most fundamental operations associated with process are Fork and

Exec. The remaining operations are Exit, Wait, Signal, Getpid and Getppid.

12

5.2.1 Semantics of Exec operation

(1) The OS closes all files and semaphores opened by the process. A new ad-

dress space is created replacing the existing one. The new process inherits

the process id of the calling process.

(2) The code (and static data, if any) of the executable file are loaded into the

code (and stack) regions of the new address space. The system library is

mapped to the library region and stack is initialized to empty.

(3) The machine instruction pointer is set to the location specified in the exe-

cutable header. The machine stack pointer is initialized to the beginning of

the stack. From here, execution continues with the newly loaded program.

5.2.2 Semantics of Fork operation

(1) A new child process with a new process id and address space is created

which is an exact replica of the original process with the same library,

code, stack and heap regions. (The OS assigns a new process id for the

child and returns this value to the parent as the return parameter of the

fork system call.) The heap, code and library regions of the parent are

shared by the child. Stack is separate for the child and is not shared.

(2) All open file handles and semaphores are shared by the parent and the

child. Note that file handles (or semaphore identifiers) of files (or semaphores)

that are opened (or created) subsequent to the fork operation by the par-

ent or the child will be exclusive to the particular process and will not be

shared. The parent and the child continue execution from here on.

13

5.2.3 Other Operations

The Exit system call terminates a process after closing all files and semaphores.

The Wait system call suspends the execution of a process till another process exits

or executes a Signal system call. The Signal system call resumes the execution of

a process that was suspended by wait.

A process can get its process id using the Getpid system call. The pid of the

parent process can be obtained using the Getppid system call.

5.3 Special Processes in eXpOS

eXpOS specifies two special processes, the idle and the init process. These

are stored in a predefined location in the disk and loaded to the memory by the

bootstrap loader. The main purpose of idle process is to run as a background

process in an infinte loop. This is demanded by the OS so that the scheduler will

always have a process to schedule. The init process is the first process executed

by the OS. The process identifiers for the idle and init processes are fixed as 0 and

1 respectively.

Chapter 6

Synchronization and Access Control

eXpOS assumes a single processor multi programming environment. This

means that all processes exist concurrently in the machine and the OS time shares

the machine between various processes. The OS specification requires that Round

Robin scheduling is used with co-operative time-sharing. The OS does not provide

any promise to the application program about the order in which processes will be

executed.

However, application programs often need to stop and wait for another pro-

cess to execute certain operations before proceeding. The OS provides system calls

that allow user processes to synchronize execution.

6.1 Process Synchronization

eXpOS provides the Wait and Signal system calls for process synchronization.

When a process executes the wait system call specifying the process id of another

process as argument, the OS puts the calling process to sleep. This means, the OS

will schedule the process out and won’t execute it until one of the following events

occur:

• The process specified as argument terminates by the exit system call.

• The process specified as argument executes a Signal system call.

15

6.2 Access Control

A second major concurrency related requirement is that when multiple pro-

cesses access the same data (in memory or files), it is often required to have some

kind of locking mechanism to ensure that when one process is accessing the shared

data, no other process is allowed to modify the same. This is to ensure data

integrity and this issue is called the critical section problem.

eXpOS provides (binary) semaphores to allow application programs to handle

the critical section problem. A (binary) semaphore is conceptually a binary-valued

variable whose value can be set or reset only by the OS through designated system

call.

A process can acquire a semaphore using the Semget system call, which re-

turns a unique semid for the semaphore. The semaphore is initially not set. Any of

the processes sharing a semaphore identifier can set the semaphore (called locking)

using the SemLock system call giving the semid as an argument. SemUnLock will

reset (called release) the semaphore waking up all other processes which went to

sleep trying to lock the semaphore. Just like semaphores, files can also be locked

using the FLock and FUnLock system calls.

Semantics of Locking operation for files and semaphores:

• If the semaphore/file is already locked, the process goes to sleep and wakes

up only when the semaphore/file is free.

• Otherwise, process locks the semaphore/file and continues execution.

Chapter 7

Hardware Interrupts and Exception Handlers

When the machine is powered on, the bootstrap loader loads the first block

of the disk into a pre-defined area in memory and transfers control to the newly

loaded code called the OS startup code. The OS startup code loads the system

call routines into memory. In addition to these, the timer interrupt handler, the

exception handler, the disk interrupt handler and the terminal handler are also

loaded. If the architecture supports other devices, then the corresponding device

interrupt handlers also must be loaded by the OS Startup code.

7.1 Timer interrupt handler

The hardware requirement specification for eXpOS assumes that the machine

is equipped with a timer device that sends periodic hardware interrupts. The OS

scheduler is invoked by the hardware timer interrupt handler. eXpOS specification

suggest that a co-operative multitasking round robin scheduling is employed. This

means that a round robin scheduling is employed, but a process may go to sleep

inside a system call when:

• The resource which the process is trying to access (like a file or semaphore)

is locked by another process (or even internally locked by another OS

system call in concurrent execution).

• There is a disk or I/O device access in a system call which is slow. If the

17

wait for the device access is to be avoided, there must be hardware support

from the device to send a hardware interrupt when device operation is

finished. This allows the OS to put the process on sleep for now, continue

scheduling the remaining processes in round robin fashion and then wake

up the sleeping process when the device sends the interrupt.

7.2 Exception handler

If a process generates an illegal instruction, an invalid address (outside its

virtual address space) or do a division by zero (or other faulty conditions which

are machine dependent), the machine will generate an exception. The exception

handler must terminate the process, wake up all processes waiting for it (or re-

sources locked by it) and invoke the scheduler to continue round robin scheduling

the remaining processes. The exception handler is also invoked when a page fault

occurs. The module which handles demand paging (if the machine hardware sup-

ports demand paging) is invoked by the exception handler when there is a page

fault.

7.3 Disk Controller

eXpOS treats the disk as a special block device and assumes that the hard-

ware provides low level block transfer routines to transfer disk blocks to memory

(pages) and back. The block transfer routines contain instructions to initiate block-

memory transfer by the disk controller hardware. After initiating the disk-memory

transfer, the block transfer routine normally returns to the calling program, which

sleeps for the disk operation to complete. When the disk-memory transfer is com-

plete, the disk controller raises a hardware interrupt. The disk interrupt handler

is responsible for waking processes that went into sleep awaiting completion of the

disk operation.

18

7.4 Terminal and other Device Handlers

All other data handling devices (other than the disk) are treated as stream

devices. It is assumed that for each device there are associated low level routines

that can be invoked by the OS to transfer data and control instructions. Some of

these devices may raise a hardware interrupt when the transfer is complete. Thus,

for each device that raises an interrupt, there must be a corresponding device

interrupt handler.

The standard input and the standard output are two special stream devices

with predefined identifiers STDIN = -1 and STDOUT = -2. Standard output

permits only Write and standard input permits only Read. The Read operation

typically puts the process executing the operation to sleep for console input from

the user. When the user inputs data, the console device must send a hardware

interrupt. The corresponding handler routine is called terminal handler. The

terminal handler is responsible for waking up processes that are blocked for input

console.

Chapter 8

System Call Interface

Application programmers interact with the Operating System using the sys-

tem calls. System calls are stored in the disk and are loaded into memory when

the OS is loaded by the bootstrap loader. When a process invokes a system call,

the process is interrupted and control goes to the corresponding interrupt service

routine of the kernel, resulting in a switch from user mode to kernel mode. Once

the system call is carried out, the control goes back to the application program,

with a switch back to the user mode.

The system calls of eXpOS are classified into file system calls, process system

calls and system calls for access control and synchronization.

8.1 File System Calls

(1) Create System Call

Arguments: Filename (String)

Return Value:

0 Success

-1 No space for file

The Create operation takes as input a filename and creates an empty file

by that name. If a root entry for the file already exists, then the system

20

call returns 0 (success). Otherwise, it creates a root entry for the file name,

sets the file type to DATA and file size to 0. Note that the file name must

be a character string and must not be root.

(2) Delete System Call

Arguments: Filename (String)

Return Value:

0 Success

-1 File not found

-2 File is open

Delete removes the file from the file system and removes its root entry. A

file that is currently opened by any application cannot be deleted. Root

file also cannot be deleted.

(3) Open System Call

Arguments: Filename (String)

Return Value:

0 Success

-1 File not found

-2 Process has reached its limit of resources

-3 System has reached its limit of open files

For a process to read/write a file, it must first open the file. Only data

and root files can be opened. The Open operation returns a file descriptor

which must be passed as argument to other file system calls, to identify

the open instance of the file. An application can open the same file several

times and each time, a different descriptor will be returned by the Open

21

operation.

The OS associates a file pointer with every open instance of a file. The

file pointer indicates the current location of file access (read/write). The

Open system call sets the file pointer to 0 (beginning of the file).

(4) Close System Call

Arguments: File Descriptor (Integer)

Return Value:

0 Success

-1 File Descriptor given is invalid

-2 File is locked by calling process

After all the operations are done, the user closes the file using the Close

system call. The file descriptor ceases to be valid once the close system

call is invoked.

(5) Read System Call

Arguments: File Descriptor (Integer) and a Buffer (a String/Integer vari-

able) into which a word is to be read from the file

Return Value:

0 Success

-1 File Descriptor given is invalid

-2 File pointer has reached the end of file

The file descriptor is used to identify an open instance of the file. The Read

operation reads one word from the position pointed by the file pointer and

stores it into the buffer. After each read operation, the file pointer advances

to the next word in the file.

22

(6) Write System Call

Arguments: File Descriptor(Integer) and a Word (String/Integer) to be

written

Return Value:

0 Success

-1 File Descriptor given is invalid

-2 No disk space

-3 File is of type ROOT

The file descriptor is used to identify an open instance of the file. The Write

operation writes the word stored in the buffer to the position pointed by

the file pointer of the file. After each Write operation, the file pointer

advances to the next word in the file. Root file and the Executable file

cannot be written.

(7) Seek System Call

Arguments: File Descriptor (Integer) and Offset (Integer) specifying the

number of positions by which the file pointer has to be shifted

Return Value:

0 Success

-1 File Descriptor given is invalid

-2 Offset value moves the file pointer to a position outside the file

The Seek operation allows the application program to change the value of

the file pointer so that subsequent Read/Write is performed from a new

position in the file. The new value of the file pointer is determined by

adding the offset to the current value. (A negative Offset will move the

23

pointer backwards). An Offset of 0 will reset the pointer to the beginning

of the file.

8.2 Process System Calls

(1) Fork System Call

Arguments: None

Return Value:

PID (Integer) Success, the return value to the parent is the PID of the child process.

0 Success, the return value to the child.

-1 Failure, Number of processes has reached the maximum limit.

Replicates the process invoking the system call. The heap, code and library

regions of the parent are shared by the child. A new stack is allocated to

the child and the parent’s stack is copied into the child’s stack.

When a process executes the Fork system call, the child process shares with

the parent all the file and semaphore descriptors previously acquired by

the parent. Semaphore/file descriptors acquired subsequent to the fork op-

eration by either the child or the parent will be exclusive to the respective

process and will not be shared.

(2) Exec System Call

Arguments: File Name (String) of the executable file (which must be of

XEXE format)

Return Value:

-1 File not found or file is of invalid type

Exec destroys the present process and loads the executable file given as

input into a new memory address space. A successful Exec operation

24

results in the extinction of the invoking application and hence never returns

to it. All open instances of file and semaphores of the parent process are

closed. However, the newly created process will inherit the PID of the

calling process.

(3) Exit System Call

Arguments: None

Return Value: None

Exit system call terminates the execution of the process which invoked it

and destroys its memory address space. The calling application ceases to

exist after the system call and hence the system call never returns.

(4) Getpid System Call

Arguments: None

Return Value:

Process Identifier (Integer) Success

Returns the process identifier of the invoking process. The system call

does not fail.

(5) Getppid System Call

Arguments: None

Return Value:

Parent Process Identifier (Integer) Success

Returns to the calling process the value of the process identifier of its

parent. The system call does not fail.

25

(6) Shutdown System Call

Arguments: None

Return Value: None

Shutdown system call terminates all processes and halts the machine.

8.3 System calls for access control and synchronization

(1) Wait System Call

Arguments: Process Identifier (Integer) of the process for which the current

process has to wait.

Return Value:

0 Success

-1 Given process identifier is invalid or it is the pid of the invoking process.

The current process is blocked till the process with PID given as argument

executes a Signal system call or exits. Note that the system call will fail

if a process attempts to wait for itself.

(2) Signal System Call

Arguments: None

Return Value:

0 Success

All processes waiting for the signaling process are resumed. The system

call does not fail.

(3) FLock System Call

26

Arguments: File Descriptor (Integer)

Return Value:

0 Success.

-1 File Descriptor is invalid.

-2 File is of type ROOT.

To lock a file so that other applications running concurrently are not per-

mitted to access the file till the calling process unlocks it. If the file is

already locked by some other process, the system call waits for the file

to be unlocked, locks it, and returns to the calling process. Root and

Executable files cannot be locked.

(4) FUnLock System Call

Arguments: File Descriptor (Integer)

Return Value:

0 Success.

-1 File Descriptor is invalid

-2 File was not locked by the calling process.

FUnLock operation allows an application program to unlock a file which

the application had locked earlier, so that other applications are no longer

restricted from accessing the file.

(5) Semget System Call

Arguments: None

Return Value:

27
SEMID (Integer) Success, returns a semaphore descriptor(SEMID).

-1 Process has reached its limit of resources.

-2 Number of semaphores has reached its maximum.

This system call is used to obtain a binary semaphore.

(6) Semrelease System Call

Arguments: Semaphore Descriptor (Integer)

Return Value:

0 Success.

-1 Semaphore Descriptor is invalid

This system call is used to release a semaphore descriptor held by the

process.

(7) SemLock System Call

Arguments: Semaphore Descriptor (Integer)

Return Value:

0 Success or the semaphore is already locked by the current process.

-1 Semaphore Descriptor is invalid

This system call is used to lock the semaphore. If the semaphore is already

locked by some other process, then the calling process goes to sleep and

wakes up only when the semaphore is unlocked. Otherwise, it locks the

semaphore and continues execution.

(8) SemUnLock System Call

Arguments: Semaphore Descriptor (Integer)

Return Value:

28
0 Success.

-1 Semaphore Descriptor is invalid.

-2 Semaphore was not locked by the calling process.

This system call is used to unlock a semaphore that was previously locked

by the calling process. It wakes up all the processes which went to sleep

trying to lock the semaphore while the semaphore was locked by the calling

process.

Chapter 9

Design of Data Structures

Data Structures can be classified into - Memory Data Structures (In-core)

and Disk Data Structures.

9.1 Disk Data Structures

The Disk Data Structures are loaded to memory by the OS startup code and

stored back when system terminates.

9.1.1 Inode Table

The Inode table is stored in the disk and has an entry for each file present

in the disk. It consists of 32 entries. Thus eXpFS permits a maximum of 32 files.

Figure 9.1: Inode Table

• FILE TYPE (1 word) - specifies the type of the given file (ROOT indicated

by 1 , DATA indicated by 2 or EXEC indicated by 3).

• FILE NAME (1 word) - Name of the file

• FILE SIZE (1 word) - Size of the file. Maximum size for File = 2048 words

30

• DATA BLOCK 1 to 4 (4 words) - each DATA BLOCK column stores the

block number of a data block of the file. If a file does not use a particular

DATA BLOCK , it is set to -1.

• Unused (9 words) - All unused entries are set to -1.

9.1.2 Disk Free List

The Disk Free List consists of 512 entries each of size one word. For each

block in the disk there is an entry in the Disk Free List which contains either 0

(free) or a number indicating the number of processes sharing the block.

9.1.3 Root File

The Root File is stored in the disk and has an entry for each file present in

the disk. It consists of 32 entries.

Figure 9.2: Root File

• FILE NAME (1 word) - Name of the file

• FILE SIZE (1 word) - Size of the file

• FILE TYPE (1 word) - specifies the type of the given file (ROOT indicated

by 1 , DATA indicated by 2 or EXEC indicated by 3).

• Unused (5 words) - All unused entries are set to -1

31

9.2 Memory Data Structures

9.2.1 Process Table

The Process Table (PT) contains an entry for each process present in the

system. The entry is created when the process is created by a Fork system call.

The maximum number of entries in PT (which is maximum number of processes

allowed to exist at a single point of time in eXpOS) is 32.

Figure 9.3: Process Table

• TICK (1 word)- keeps track of how long the process was in memory. It

has an initial value of 0 and is updated whenever the scheduler is called.

TICK is reset to 0 when a process is swapped out or in.

• PID (1 word) - process descriptor, set by Fork System Call.

• PPID (1 word) - process descriptor of the parent process, set by Fork

System Call.

• STATE (2 words) - a two tuple that describes the current state of the

process.

• PER-PROCESS RESOURCE TABLE (16 words) - Per-Process Resource

Table contains information about the files opened by the process as well

as semaphores used by the process.

• INODE INDEX (1 word)- Pointer to the Inode entry of the executable file,

which was loaded into the process’s address space.

32

• INPUT BUFFER (1 word) - Buffer used to store the input read from the

terminal. Whenever a word is read from the terminal, Terminal Interrupt

Handler will store the word into this buffer.

• MODE FLAG (1 word) - Used to indicate whether the process is executing

in kernel (1) or user (0) mode.

• KERNEL RE-ENTRY POINT (1 word) - Contains the return address

when a process voluntarily schedules out itself inside a blocking system

call.

• PTBR (1 word) - pointer to PER PROCESS PAGE TABLE.

• MACHINE STATE POINTER(1 word) - pointer to a structure that gives

the machine state when the process was last executed. The scheduler

uses this structure to store the context of the process while scheduling.

MACHINE STATE is architecture-dependent.

• Unused (5 words)

Invalid entries are represented by -1.

States The tuple can take the following values

• (RUNNING,): The process is in execution. This field is set by Scheduler

when a process is scheduled.

• (READY,): The process is ready to be scheduled.

• (WAIT PROCESS, WAIT PID): The process is waiting for a signal from

another process whose PID is WAIT PID. This field is set by WAIT system

call.

33

• (WAIT FILE, FTENTRY): The process is blocked for a file whose file table

entry index is FTENTRY.

• (WAIT DISK,): The process is blocked because of one of the following

reasons:

(1) It is waiting for disk to complete a disk-memory transfer operation it

had initiated.

(2) It wants to execute a disk transfer, but the disk is busy, handling a

disk-memory transfer request issued by some other process.

• (WAIT SEMAPHORE, SEMID): The process is waiting for a semaphore

(whose descriptor is SEMID) that was locked by some other process.

• (WAIT MEM,): The process is blocked due to unavailability of memory

pages.

• (SWAPPED,): The stack page of the process has been swapped out into

disk.

• (SWAPPED WAIT, WAIT PID): The stack page of a process which was

in (WAIT PROCESS, WAIT PID) state has been swapped out into disk

• (WAIT BUFFER, BUFFERID): The process is waiting for disk buffer of

index BUFFERID to be unlocked.

• (WAIT TERMINAL,): The process is waiting for Read from Terminal

to be completed.

Machine State The OS scheduler can schedule out a process in execution

and save its machine state here. Later, the scheduler can restore the machine state

to start execution from where it had stopped. The initial values of this structure are

34

fixed by the OS loader (or exec system call) and the values get updated whenever

the process is preempted.

Figure 9.4: Machine State

• SP (1 word)- Contents of Stack Pointer Register.

• BP (1 word) - Contents of Base Pointer Register.

• IP (1 word) - Contents of Instruction Pointer Register.

• PTBR (1 word)- Contents of Page Table Base Register.

• PTLR (1 word)- Contents of Page Table Length Register.

• REGISTERS (24 words) - Machine registers.

• Unused (3 words)

Per Process Resource Table

The Per-Process Resource Table has 8 entries and each entry is of 2 words.

For every instance of file opened (or a semaphore acquired) by the process, it stores

the index of the File Table (or Semaphore Table) entry for the file (or semaphore).

In case of a file, the second word stores the LSEEK position of the open instance

of that file. The LSEEK position indicates the location in the file where a word is

read from or written to corresponding to the open instance of the file. In case of a

semaphore, the second word is unused. File descriptor, returned by Open system

call, is the index of the per-process resource table entry for that open instance of

the file.

35

Figure 9.5: Per Process Resource Table

Per Process Page Table Each valid entry of the Per Process Page Table

stores the physical page number corresponding to each logical (virtual) page asso-

ciated with the process. The logical page number can vary from 0 to 7 for each

process. Therefore, each process has 8 entries in the page table.

Associated with each page table entry, typically auxiliary information is also

stored. This is to store information like whether the process has write permission

to the page, whether the page is dirty, referenced, valid etc. The exact details are

architecture dependent.

Figure 9.6: Per Process Page Table

• Reference bit - The reference bit for a page table entry is set to 0 by the

OS when the page is loaded to memory and the page table initialized.

When a page is accessed by a running process, the corresponding reference

bit is set to 1 by the machine. This bit is used by the page replacement

algorithm of the OS.

• Valid bit - This bit is set to 1 by the OS when the physical page number

field of a page table entry is valid (i.e, the page is loaded in memory). It is

set to 0 if the entry is invalid. The OS expects the architecture to generate

a page fault if any process attempts to access an invalid page.

• Write bit - This bit is set to 1 by the OS if the page can be written and

is set to 0 otherwise. The OS expects the architecture to generate an

36

exception if any process attempts to modify a page whose write bit is not

set.

9.2.2 File Table

The File Table stores the information about all the files that are open while

the OS is running. It consists of 32 entries. Thus, there can be at most 32 open

files in the system at any time.

Figure 9.7: File Table

• INODE INDEX (1 word) - specifies the index of the entry for the file in

the Inode table.

• FILE OPEN COUNT (1 word) - specifies the number of open instances of

the file

• ULOCK (1 word)- If the file was locked by a process using FLock system

call, this field specifies the PID of the process, otherwise, it is set to -1.

• KLOCK (1 word)- If the file is locked by the process inside a system call,

this field specifies the PID of the process, otherwise, it is set to -1.

• Unused (4 words)

All invalid entries are set to -1.

9.2.3 Semaphore Table

The Semaphore Table contains details about all the semaphores used by the

processes. It consists of 32 entries. Thus, there can be at most 32 semaphores used

37

in the system at any time. For every semaphore entry in the per-process resource

table, there is a corresponding entry in the semaphore table.

Figure 9.8: Semaphore Table

• LOCKING PID (1 word)- specifies the PID of the process which has locked

the semaphore

• PROCESS COUNT (1 word) - specifies the number of processes which are

sharing the semaphore.

• Unused (2 words)

All invalid entries are set to -1.

9.2.4 Buffer Table

The buffer table is a data structure that stores the information regarding the

disk block stored in each buffer. The present version of eXpOS sets MAX BUFFER

= 4. Each buffer is identified by its index in the buffer table.

Figure 9.9: Buffer Table

• BLOCK NUMBER (1 word) - specifies block number of the disk block

which is currently stored in the buffer. It is set to -1 if the buffer does not

contain any valid disk block.

38

• DIRTY BIT (1 word) - specifies whether the block stored in the buffer has

been modified. It is set to 0 when a disk block is loaded into the buffer

and is set to 1 when modified by the Write System Call.

• LOCKING PID (1 word) - specifies the PID of the process which has

currently locked the buffer while executing a file system call.

• Unused - (1 word)

Free entries are represented by -1 in all the fields.

9.2.5 Disk Status Table

The Disk Status Table keeps track of these disk-memory transfers. Every

time a disk operation is invoked, the information regarding the operation like the

disk block and the memory page involved, the process that invoked the operation

and type of disk operation are stored in Disk Status Table by the OS.

Figure 9.10: Disk Status Table

• STATUS (1 word) - specifies whether the disk is free (indicated by 0) or

busy (indicated by 1) handling a memory-disk transfer.

• LOAD/STORE BIT (1 word) - specifies whether the operation being done

on the device is a load (indicated by 0) or store (indicated by 1).

• PAGE NUMBER (1 word) - specifies the memory page number involved

in the disk transfer

• BLOCK NUMBER (1 word) - specifies the disk block number involved in

the disk transfer.

39

• PID (1 word) - specifies the PID of the process which invoked the disk

transfer. It is set to -PID if the disk transfer was initiated by the scheduler,

to load/store a page of the process with identifier PID.

• Unused (3 words)

9.2.6 System Status Table

It keeps the information about the number of free pages in memory, the

number of processes blocked because memory is unavailable and, the number of

processes in swapped state.

Figure 9.11: System Status Table

• MEM FREE COUNT (1 word) - specifies the number of free pages avail-

able in memory.

• WAIT MEM COUNT (1 word) - specifies the number of processes waiting

for memory.

• SWAPPED COUNT (1 word)- specifies the number of processes in (SWAPPED,

) or (SWAPPED WAIT,) state.

• Unused (1 word)

9.2.7 Terminal Status Table

The Terminal Status Table keeps track of the Read operations done on the

terminal. Every time a Read system call is invoked on the terminal, the PID of

the process that invoked the system call is stored in Terminal Status Table.

40

Figure 9.12: Terminal Status Table

• STATUS (1 word) - specifies whether the terminal is free or is being used

by a process to read input. This field is initially set to 0. It is changed

to 1 whenever terminal is busy. The Terminal Interrupt Handler sets back

the status to 0 upon completion of Terminal Read.

• PID (1 word) - specifies the PID of the process which is currently reading

input from the terminal. This field is invalid when STATUS is 0.

• Unused (2 words)

9.2.8 Memory Free List

The Memory free list is a data structure used for keeping track of used and

unused pages in the memory. It consists of 128 entries and each entry is of size

one word. Each entry of the free list contains either the value 0 indicating that

the corresponding page in the memory is free (not allocated to any process) or

contains the number of processes that are sharing the page.

Chapter 10

Algorithms Used

Algorithm 1 Create System Call

Input: Filename
Output: 0 (Success) or -1 (No Space for file)

If the file is present in the system, return 0.
Find the index of a free entry in the Inode Table. If no free entry found, return
-1.
Allocate the Inode Table entry to the file.
Update the Root file by adding an entry for the new file.
return 0

Algorithm 2 Delete System Call

Input: Filename
Output: 0 (Success) or -1 (File not found) or -2 (File is open)

If file is not present in Inode Table or if it is not a DATA file, return -1.
Find the index of the file in the Inode Table.
If File Table entry exists with the same index as found above, return -2.
Update Inode Table.
Update the Root file by invalidating the root entry for the file.
return 0

42

Algorithm 3 Open System Call

Input: Filename
Output: File Descriptor (Success) or -1 (File not found) or -2 (Process has reached

its limit of resources) or -3 (System has reached its limit of open files)
If file is not present in Inode Table or if it is of type EXEC, return -1.
Find the index of the Inode Table entry of the file.
Allocate entry in Per Process Resource Table
if file is already open then

Get the File Table entry of the file and increment the File Open Count.
else

Find a free entry in the File Table. If there are no free entries, return -3.
end if
Allocate the Per-Process Resource Table entry to the file.
Update the File Table entry.
return Index of the Per-Process Resource Table entry.

Algorithm 4 Close System Call

Input: File Descriptor
Output: 0 (Success) or -1 (File Descriptor is invalid) or -2 (File is locked by calling

process)
If file descriptor does not correspond to valid entry in Per Process Resource
Table, return -1
Get the index of the File Table entry from Per-Process Resource Table entry.
If file is locked by the current process, return -2.
In the File Table Entry found above, decrement the File Open Count. If the
count becomes 0, invalidate the entry.
Invalidate the Per-Process Resource Table entry.
return 0

43

Algorithm 5 Read System Call

Input: File Descriptor and a Buffer (a String/Integer variable) into which a word
is to be read from the file

Output: 0 (Success) or -1 (File Descriptor is invalid) or -2 (File pointer has
reached the end of file)
if input is to be read from terminal then

Wait till terminal gets the input for the current process.
Copy the word from the input buffer of the Process Table to the buffer passed
as argument and return with 0.

end if
If file descriptor does not correspond to a valid entry in Per Process Resource
Table, return -1.
Check the validity of the File pointer
If the file is of type ROOT, read the word from the given position and return 0.
Find the block and the position in the block from which input is read.
while the file is locked by a process other than the current process do

put the process to sleep and call the scheduler.
end while
Lock the file.
Get the buffer page number from block number.
while the buffer is locked by a process other than the current process do

put the process to sleep and call the scheduler.
end while
Lock the buffer page.
if the buffer contains a block other than the required block then

Bring the block to the buffer from the disk
end if
Copy the word at the offset position of the block into the buffer passed as
argument and Increment lseek position.
Unlock the buffer and wake up all processes waiting for the buffer.
Unlock the file and wake up all processes waiting for the file.
return 0

44

Algorithm 6 Write System Call

Input: File Descriptor and a Word to be written
Output: 0 (Success) or -1 (File Descriptor given is invalid) or -2 (No disk space)

or -3 (File is of type ROOT).
if word is to be written to standard output then

Issue the machine instruction to output the given word and return 0.
end if
If file descriptor does not correspond to valid entry in Per Process Resource
Table, return -1.
If the file descriptor corresponds to Root file, return -3.
Get the index of the File Table entry and lseek position from the Per Process
Resource Table entry.
If lseek is equal to MAX FILE SIZE - 1, return -2.
Find the block and position in the block to which data has to be written.
while the file is locked by a process other than the current process do

put the process to sleep and call the scheduler.
end while
Lock the file.
Get the buffer page number from block number.
while the buffer is locked by a process other than the current process do

put the process to sleep and call the scheduler.
end while
Lock the buffer page.
if the buffer contains a block other than the required block then

Bring the block to the buffer from the disk
end if
Copy the word passed as argument to the offset position in the buffer.
Set dirty bit to 1 in the Buffer Table entry and increment lseek position.
Increment file size in the Inode Table entry and Root file entry.
Unlock the buffer and wake up all processes waiting for buffer.
Unlock the file and wake up all processes waiting for the file.
return 0.

45

Algorithm 7 Seek System Call

Input: File Descriptor and Offset
Output: 0 (Success) or -1 (File Descriptor given is invalid) or -2 (Offset value

moves the file pointer to a position outside the file)
If file descriptor does not correspond to valid entry in Per Process Resource
Table, return -1.
Get the index of the File Table entry and lseek position from the Per Process
Resource Table entry.
Check the validity of the given offset
if given offset is 0 then

Set lseek value in the Per-Process Resource Table entry to 0.
else

Change the lseek value in the Per-Process Resource Table entry to
lseek+offset.

end if
return 0

Algorithm 8 Fork System Call
Input: None
Output: Process Identifier to the parent process and 0 to child process (Success)

or -1 (Number of processes has reached its maximum, returned to parent)
If no free entry in the Process Table, return -1.
Find the index of a free entry in the Process Table and set the PID and PPID
field.
Count the number of valid stack pages from the Page Table of the parent process.
If sufficient number of free pages are not present in memory, then increment the
WAIT MEM COUNT in the System Status Table.
while sufficient number of free pages are not present in memory do

put the process to sleep and call the scheduler.
end while
for each stack page of the parent process do

if the stack page is valid then
Allocate a free page to the child.
Copy the stack page of the parent into the child stack page.

else
Share the swap block containing the stack page with the child.

end if
end for
Construct the context of the child process.
Set the return value to 0 for the child process.
return The PID of the child process to the parent process.

46

Algorithm 9 Exec System Call

Input: Filename
Output: -1 (File not found or file is of invalid type)

If file not found in system or file type is not EXEC, return -1.
For each page of the current process that is swapped out, find the swap block
and decrement its entry in the Disk Free List.
Setup code and library pages.
Free the heap pages
In the Process Table entry of the current process, set the Inode Index field to
the index of Inode Table entry for the file.
Close all files opened by the current process.
Release all semaphores held by the current process.
Set SP to the start of the stack region and IP to the start of the code region.
return

Algorithm 10 Exit System Call
Input: None
Output: None

If no more processes to schedule, shutdown the machine.
Unlock and close all files opened by the current process.
Release all the semaphores used by the current process.
Wake up all processes waiting for the current process.
Invalidate the Process Table entry and the page table entries of the current
process
Invoke the scheduler to schedule the next process.

Algorithm 11 Getpid System Call
Input: None
Output: Process Identifier (Success)

Find the PID of the current process from the Process Table.
return the PID of current process.

Algorithm 12 Getppid System Call
Input: None
Output: Process Identifier (Success)

Find the PPID of the current process from the Process Table.
return PPID.

47
Algorithm 13 Wait System Call

Input: Process Identifier of the process for which the current process has to wait.
Output: 0 (Success) or -1 (Given process identifier is invalid or it is the pid of

the invoking process)
If process is intending to wait for itself or for a non-existent process, return -1.
Change the status from (RUNNING,) to (WAIT PROCESS, Argument PID)
in the Process Table.
Invoke the Scheduler to schedule the next process.
return 0

Algorithm 14 Signal System Call
Input: None
Output: 0 (Success)

Wake up all processes waiting for the current process.
return 0

Algorithm 15 FLock System Call

Input: File Descriptor
Output: 0 (Success) or -1 (File Descriptor is invalid) or -2 (File is of type ROOT).

If file descriptor does not correspond to valid entry in Per Process Resource
Table, return -1.
If the file descriptor corresponds to Root file, return -2.
while the file is locked by a process other than the current process do

Change the state to (WAIT FILE, ftindex) where ftindex is the File Table
index of the locked file and call the Scheduler.

end while
Change the ULock field of the file table to PID of current process.
return 0

Algorithm 16 FUnLock System Call

Input: File Descriptor
Output: 0 (Success) or -1 (File Descriptor is invalid) or -2 (File was not locked

by the calling process)
If file descriptor does not correspond to a valid entry in Per Process Resource
Table, return -1.
if file is locked then

If current process has not locked the file, return -2.
Unlock the file.
Wake up all processes waiting for the file.

end if
return 0

48

Algorithm 17 Semget System Call
Input: None
Output: semaphore descriptor (Success) or -1 (Process has reached its limit of

resources) or -2 (Number of semaphores has reached its maximum)
Find the index of a free entry in Per Process Resource Table. If no free entry,
then return -1.
Find the index of a free entry in Semaphore table and increment the process
count. If no free entry, return -2.
Store the index of the Semaphore table entry in the Per Process Resource Table
entry.
return Semaphore Table entry index.

Algorithm 18 Semrelease System Call

Input: Semaphore Descriptor
Output: 0 (Success) or -1 (Semaphore Descriptor is invalid)

If Semaphore descriptor is not valid or the entry in Per Process Resource Table
is not valid , return -1.
if semaphore is locked by the current process then

Unlock the semaphore before release.
end if
Decrement the process count of the semaphore.
Invalidate the Per-Process resource table entry.
return 0

Algorithm 19 SemLock System Call

Input: Semaphore Descriptor
Output: 0 (Success or the semaphore is already locked by the current process) or

-1 (Semaphore Descriptor is invalid)
If Semaphore descriptor is not valid or the entry in Per Process Resource Table
is not valid , return -1.
while the semaphore is locked by a process other than the current process do

Put the current process to sleep
Call scheduler

end while
Change the Locking PID to PID of the current process in the Semaphore Table.
return 0

49

Algorithm 20 SemUnLock System Call

Input: Semaphore Descriptor
Output: 0 (Success) or -1 (Semaphore Descriptor is invalid) or -2 (Semaphore

was not locked by the calling process)
If Semaphore descriptor not valid or the entry in Per Process Resource Table is
not valid , return -1.
if semaphore is locked then

If current process has not locked the semaphore, return -2.
Unlock the semaphore.
Wake up all processes waiting for the semaphore.

end if
return 0

Algorithm 21 Timer Interrupt Handler

Save the context of current process and mark it as ready.
Increment TICK
if free memory pages present then

if there are sleeping processes that requires memory pages then
Wake up all processes that requires memory pages.

else
if disk is free and there are swapped processes then

Swap in the seniormost swapped out process.
end if

end if
else

if disk is free and there are processes that require memory pages then
Use the modified second chance algorithm to find an unreferenced page
if the unreferenced page is a code page then

In the page table entry of the unreferenced page, store the code block
number.

else
If the unreferenced page is a stack or heap page, swap the page to a free
swap block in the disk.

end if
if unreferenced page is pointed to by the stack pointer of the process then

Mark the process that owns the page as swapped out.
end if

end if
end if
Schedule the next ready process

50

Algorithm 22 Disk Interrupt Handler

In the Disk Status Table, set the STATUS field to 0, indicating that the disk is
no longer busy.
if load/store was issued by a process then

Wake up all processes waiting for the disk.
If the loaded block was a swap block, decrement the corresponding Disk Free
List entry.

else
Get the PID of the process for which the scheduler had issued the load/store
instruction.
if the disk operation was a load operation then

Update Disk Free List.
Update the Page Table of the process.
Mark the process as ready.
Decrement SWAPPED COUNT in System Status Table.

else
Update Memory Free List.
Update Page Table of the process.
Increment the MEM FREE COUNT in the System Status Table.

end if
end if

Algorithm 23 Exception Handler

If the exception is not caused by a page fault, display the cause and exit the
process.
Find the page table entry of the page causing the exception.
If there are no free pages in the memory, then increment the
WAIT MEM COUNT in the System Status Table.
while there are no free pages in memory do

Put the current process to sleep and call scheduler
end while
Find a free page in memory.
if the page that caused exception is stored in the disk then

while the disk is busy do
Put the current process to sleep and call scheduler

end while
Load the block to the memory page found above.
Put the current process to sleep and call scheduler.

end if
Update the Page Table entry of the page that caused exception.
return

51
Algorithm 24 Terminal Interrupt Handler

Set the status field in Terminal Status Table to 0.
Locate the Process Table entry of the process that read the data.
Copy the word read from standard input to the Input Buffer field in the Process
Table entry.
Set the PID field of Terminal Status Table to -1.
Wake up all processes waiting for terminal.

Algorithm 25 OS Startup Code

Load the software interrupts and handler routines to memory.
Load the init program to memory and set up its machine context.
Load the idle program to memory and set up its machine context.
Load the disk data structures to the memory.
Initialize all the memory data structures.
Schedule the init process for execution.

Algorithm 26 Shutdown System Call

while disk is not free do
Put the current process to sleep and call scheduler

end while
Store Inode Table to the disk.
Store dirty pages contained in buffer to the disk.
Store Disk Free List to the disk.
Store the Root file to the disk
Halt the machine.

Algorithm 27 Shell process

while true do
Get the program to be executed using read system call
If the shutdown instruction is received, invoke shutdown system call.
childPID = fork();
if childPID == 0 then

Execute the program given by read.
else

Wait for child to finish execution.
end if

end while

Algorithm 28 Idle process

while true do
end while

Chapter 11

Work Done

• The existing OS data structures were redesigned to incorporate the changes

done.

• New data structures like Buffer Table, Disk Status Table, Semaphore Ta-

ble, System Status Table etc were designed.

• System calls were redesigned to incorporate asynchronous operations, buffer

cache and co-operative time sharing scheduling.

• Executable file format was designed.

• Algorithms for system calls and other interrupt handlers were designed.

• Webpage for Project eXpOS was created. http : //exposnitc.github.io/

Chapter 12

Future Work

• Building a Roadmap for guidance.

• Implementing and testing the algorithms designed

• Adding more features like file permissions and Super-User previleges.

• Adding Multi-Threading feature.

• Adding a Directory structure in eXpFS.

Chapter 13

Conclusion

This project aims to create a simpler version of an operating system which

allows students to acquire insight into the working of a real operating system.

Bibliography

[1] Shamil C. M., Sreeraj S, and Vivek Anand T.Kallampally, ”XOS - An Exper-
imental Operating System”, http : //xosnitc.github.io/

[2] Saman Hadiani, Niklas Dahlbck, and Uwe Assmann, ”Nachos Beginner’s
Guide”, http : //www.ida.liu.se/ TDDB63/material/begguide/

[3] George Fankhauser, Christian Conrad, Eckart Zitzler, Bernhard Plat-
tner, ”Topsy - A Teachable Operating System”, Version 1.1, http :
//www.tik.ee.ethz.ch/ topsy/Book/Topsy1.1.pdf

[4] Maurice J. Bach, ”The Design of Unix Operating System”

[5] Thomas W. Doeppner, ”Operating Systems in Depth”, Wiley, 2011.

Appendix A

Appendix

A.1 State Transition Diagram in eXpOS

Figure A.1: State Transitions

A

READY → RUNNING : The scheduler has scheduled the process for execution.

B

RUNNING→WAIT TERMINAL : The process is either waiting for access to the

57

terminal or for data to be inputted through terminal.

RUNNING → WAIT DISK : The process is either waiting for access to the disk

or for the disk operation to finish.

C

RUNNING → WAIT SEMAPHORE : The semaphore which the process is trying

to use, is found to be locked.

RUNNING → WAIT FILE : The file which the process is trying to read/write, is

found to be locked.

RUNNING → WAIT BUFFER : The buffer which the process is trying to use, is

found to be locked.

RUNNING → WAIT MEM : The process requires a free memory page but there

are none in the memory.

D

RUNNING → WAIT PROCESS : The process is waiting for another process to

either exit or to signal it.

E

RUNNING → Exit from system : The process has either completed execution or

has invoked an Exit System Call.

F

WAIT SEMAPHORE→ READY : The semaphore for which the process was wait-

ing, is now unlocked.

WAIT FILE → READY : The file for which the process was waiting, is now un-

locked.

WAIT BUFFER → READY : The buffer for which the process was waiting, is

now unlocked.

WAIT MEM → READY : There are free pages in memory.

58

G

WAIT SEMAPHORE / WAIT FILE / WAIT BUFFER / WAIT MEM→ SWAPPED

: The current stack page of the process has been swapped out.

H

WAIT TERMINAL→ READY : The input data has been read from terminal and

terminal is free to be used by any process.

WAIT DISK → READY : The disk operation is complete.

I

WAIT TERMINAL / WAIT DISK→ SWAPPED : The current stack page of the

process has been swapped out.

J

WAIT PROCESS → READY : The process has either received a signal from the

process it was waiting for or the latter has exited the system.

K

READY → SWAPPED : The current stack page of the process has been swapped

out.

L

SWAPPED → READY : The stack page required by the process to continue exe-

cution was swapped in.

M

RUNNING → READY : Context switch caused by the timer interrupt routine.

N

WAIT PROCESS → SWAPPED WAIT : The current stack page of the process

was swapped out while waiting for another process.

O

SWAPPED WAIT → SWAPPED : The process in SWAPPED WAIT state has

either received a signal from the process it was waiting for or the latter has exited.

